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Abstract—In this paper, we propose an ESPRIT-based para-
metric prediction scheme for narrowband MIMO systems that
fully exploits both temporal and spatial correlations in realistic
MIMO channels. The proposed predictor uses a vector transmit
spatial signature model and two-dimensional ESPRIT for the
estimation of the channel parameters. The proposed scheme
outperforms existing algorithms and is well suited to both two
dimensional azimuth only and three dimensional MIMO spatial
channel models.

I. INTRODUCTION

In mobile MIMO wireless communication systems, full
multiplexing and/or diversity gain can be obtained when
channel state information (CSI) is available at the transmitter.
Channel reciprocity is often exploited in time division duplex
(TDD) systems to obtain CSIT. However, in frequency division
duplex (FDD), CSI is estimated at the receiver and fed back
to the transmitter [1]. Because of delays in processing and
feedback that is inherent in practical systems, such state
information rapidly becomes outdated before its actual usage
for precoding and/or link adaptation at the transmitter. This
results in performance degradation and a reduction in the
gains expected from using MIMO under time varying channel
conditions. Prediction of the channel into the future has
been recognised has an effective means of mitigating the
performance degradation due to feed back delays.

The problem of multipath prediction has been well ad-
dressed for single input single output (SISO) systems. In
[2], [3] the narrowband SISO channel is modelled as an
autoregressive (AR) process of a particular order and a linear
predictor that minimizes the mean squared error (MSE) is
used to predict future states of the channel using the AR
parameters. These schemes consider the time-varying channel
as a stochastic wide sense stationary process (WSS) and use
the temporal correlation for prediction without accounting for
the physical scattering phenomenon causing the fading. Other
researchers [4], [5] have used the ray based sum of sinusoids
approach where the fading channel is modelled as a sum of a
finite number of plane waves. Direction of arrival estimation
algorithms are used to estimate the number of scattering
sources and angles of arrival and the channel is predicted using

the model. Analytical and simulation results on SISO predic-
tion have proven that with dense scattering, SISO channels
can only be predicted over a very short distance (of the order
of tenths of a wavelength) depending on the environment and
propagation scenarios. The bound on SISO channel prediction
error in [6] indicated that channel prediction schemes require
channel state information over several wavelengths in order
to accurately predict the channel and that prediction beyond a
wavelength is not realistic particularly in practical cases where
the stationarity assumption does not hold long enough relative
to the length of observation.

The possibility of predicting multi-antenna channels was
first investigated in [7] through an evaluation of downlink
beamforming with channel prediction. It was shown that
channel prediction improves MISO smart antenna system
performance. An explanation for this is that more structure
of the wavefield is revealed through multiple sampling and
better prediction can therefore be expected. Bounds on the
prediction error of MIMO channels [8] indicate that better
prediction can be obtained by utilizing the spatial parameters
of the MIMO channel. The authors used auto-regressive (AR)
modelling for the prediction of a beamspace transformed CSI
and an inverse transformation was performed on the predicted
CSI. They argue that the transformation reduces the effective
number of rays present in the channel which ultimately results
in longer prediction. The proposed beamspace transformation
matrix is, however, not well conditioned and so the inverse
transformation is difficult to perform. A similar approach
based on ray cancelling was presented in [9]. The scheme
utilizes QR decomposition to overcome the ill-conditioning of
the transformation matrix. It was however assumed that the
angle of arrival and angle of departure are known. Estimation
of the angle of departure require the transmitter to have a large
number of transmit antennas which is not realistic in practical
systems and moreover the error propagation problem with AR
model based prediction limits the application in systems where
long range prediction is required.

The novel contributions of this paper are as follows.
• We propose a parametric prediction scheme for narrow-

band MIMO systems that fully exploits both the temporal



and spatial correlations in realistic spatial channel models.
By utilizing the spatial correlation of the channel, we
reduce the number of parameters estimated, improve es-
timation accuracy and increase the achievable prediction
horizon.

• We propose an ESPRIT-based approach for AOA esti-
mation that utilizes spatial correlation to achieve two-
dimensional angle estimation using a one dimensional
array at right angle to the direction of motion.

• We perform rigorous simulations to evaluate the perfor-
mance of the proposed algorithm and compare it with
existing schemes. We analyze the effects of the number of
antennas, SNR, and training length on MIMO prediction
performance. Simulation results show that the proposed
algorithm outperforms existing algorithms.

II. PROPAGATION MODELS

A. System Model

We consider a narrowband MIMO System with NT transmit
and NR receive antennas. The received signal is given by

y(t) = H(t)x(t) + w(t) (1)

where x(t) = [x1(t), · · · , xNT
(t)]T is the NT × 1 vector of

transmitted signals, y(t) = [y1(t), · · · , yNR
(t)]T is the NR×1

vector of received signals, w(t) = [w1(t), · · · , wNR
(t)]T is

the NR × 1 vector of received signal noise and H(t) is
the NR × NT channel impulse response matrix. We here
assume that interference can be modelled as a noise component
and that estimates of the MIMO channel impulse response
can be obtained by transmitting known training signal, but
the received signal noise introduces imperfections in this
estimation. The channel estimate is therefore modelled as a
summation of the actual channel and some error

Ĥ(k) = H(k) + N(k); k = 1, 2, · · · ,K (2)

where K denotes the number of available CSI estimates, and
N(k) is the NR × NT matrix of estimation noise at the kth
time instant. We simplify this estimation by assuming N(k) to
be spatially and temporally white complex Gaussian random
variable with zero mean and variance σ2

N .

B. Narrowband MIMO Channel Model

A commonly used multipath model is the ray based sum of
sinusoids model. The model is defined for a single input single
output (SISO) system as the superposition of P scattering
sources

h(t) =

P∑
p=1

αp exp(jωpt) (3)

where αp is the complex amplitude of the pth scattering source
and ωp is the Doppler frequency defined as

ωp = kV cos θp (4)

In (4), V is the mobile velocity, θp is the angle of arrival of
the pth scatterer, k = 2π

λ is the wave number and λ is the

wavelength. The SISO model in (3) can be extended to mod-
elling of a MIMO propagation channel via the introduction of
the spatial dimension [8]

H(t) =

P∑
p=1

αpbr(θp)b
T
t (φp) exp(jωpt) (5)

where φp is the angle of departure and br and bt are the
receive and transmit array response vectors in the direction of
the pth scattering source, respectively. For a uniform linear
array (ULA) with antenna spacing ∆r at the receiver, the
receive array steering vector is defined as

br(θp) = [1, exp(jΩp), · · · , exp(j(NR − 1)Ωp)]
T (6)

where Ωp = k∆r sin θp. The transmit response vector, bt(φp),
is obtained by replacing ∆r with ∆t and θp with φp in (6).
The two dimensional model in (5) is based on the assumption
that the effects of the elevation spectrum can be neglected.
Recent studies in MIMO channel modelling have however
shown that the elevation spectrum needs to be accounted for,
particularly in indoor and in-vehicle outdoor mobile scenarios
where reflections from the ceiling and/or ground are significant
[10], [11]. Thus, we introduce elevation angles of arrival and
departure in (5) to obtain

H(t) =

P∑
p=1

αpbr(θp, ζp)b
T
t (φp, εp) exp(jωpt) (7)

where ζp and εp are the elevation angle of arrival and depar-
ture, respectively. The steering vectors, br and bt for the 3D
model are of the form

b(θ, ϕ) = [1, exp(jΦ), exp(j2Φ), · · · , exp(j(NR − 1)Φ)]T

(8)
where Φ = k∆r sin θ sin ζ and the Doppler frequency is ω =
kV sin θ cos ζ.

III. PREDICTION SCHEME

Prediction of the MIMO channel impulse response using
the 2D model in (6) and 3D model in (8) is essentially a
model parameter estimation problem. This implies that for our
prediction, we need to estimate the AOD, AOA and complex
amplitudes of the contributing rays. Since the transmitter is
stationary, estimation of the AOD requires a large number of
transmit antennas to be deployed at the transmitter. In order
to overcome this problem, we reduce the channel models to

H(t) =

P∑
p=1

br(θp)v
T
p exp(jωpt) (9)

and

H(t) =

P∑
p=1

br(θp, ζp)v
T
p exp(jωpt) (10)

where vp is an 1 × NT vector defined as the product of
the complex amplitudes and transmit array steering vector.
We henceforth refer to vp as the transmit spatial signature



(TSS). We now discuss the procedure for the parameter esti-
mation stage of the proposed ESPRIT-based MIMO prediction
(ESMIP) algorithm.

A. Covariance Matrix and Subspace Dimension Estimation

Using the K available channel estimates, we form an
NRQ×NTL block-Hankel matrix

D̂ =


Ĥ(1) Ĥ(2) · · · Ĥ(S)

Ĥ(2) Ĥ(3) · · · Ĥ(S + 1)
...

...
. . .

...
Ĥ(Q) Ĥ(2) · · · Ĥ(K)

 (11)

where S = (K − Q + 1) is the number of averages of
correlation estimates and Q is the Hankel matrix size which
defines the number of correlation lags and the size of the
covariance matrix. The spatio-temporal correlation matrix is
then estimated from D̂ as

R̂ =
D̂D̂†

(NTS)
(12)

where † denotes the Hermitian conjugate transpose. Let λ̂1 ≥
· · · ≥ λ̂NRQ be the eigenvalues of R̂ in descending order of
magnitude. The number of dominant sources can be estimated
using the minimum description length (MDL) as [12]

P̂ = arg min
z=1,··· ,NRQ−1

[
S log(λz) +

1

2
(z2 + z) logS

]
(13)

B. DOA/Receive Steering Vector Estimation

1) Data Model: In order to estimate the AOA from the
spatio-temporal correlation matrix in (12), we derive a model
for the data in D. Let d(θp, ζp) be a Q× 1 vector defined as

dm(θp, ζp) = [exp(jmγp), exp(j(m+1)γp), · · · , exp(jνγp)]
T

(14)
where γp = 2π∆x cos θp sin ζp is the normalized Doppler
frequency, ∆x is the spatial sampling interval and ν =
m + Q − 1. Each group of NT columns of D corresponds
to NT independent observations at the same sampling instant.
The columns of D can therefore be modelled as

H(u) =

N∑
p=1

vp(i)br(θp, ϕp)⊗ dm(θp, ϕp) (15)

where u = mNT +i, i = 1, · · · , NT and m = 0, 1, · · · , P −1
and ⊗ denotes the Kronecker product. A matrix representation
of (15) is

H(u) = A(θ, ϕ)β(u) + n (16)

where A(θ, ϕ) = [br(θ1, ζ1)⊗ d1(θ1, ζ1), · · · ,br(θN , ζN )⊗
d1(θN , ζN )] is an NRQ × N matrix equivalent to the array
steering matrix of a two dimensional array and β(u) =
[v1(i) exp(j(m− 1)γ1, · · · ,vN (i) exp(j(m− 1)γN ]T .

2) 2D-ESPRIT based DOA Estimation: The invariance
structure [13] present in the steering matrix A(θ, ϕ) can
be exploited to perform a 2D angle estimation for the an-
gle of arrivals (θp, ϕp); p = 1, · · · , N as in [14] where
a rectangular array was used for the joint estimation of
azimuth and elevation angles. We define diagonal matrices
Φ = diag(Φ1, · · · ,ΦN ) and γ = diag(γ1, γ2, · · · , γN ) and
selection matrices

J1θ =
[
I(NR−1) 0(NR−1)

]
Jθ1 = J1θ ⊗ IP

J2θ =
[
0(NR−1) I(NR−1)

]
Jθ2 = J2θ ⊗ IP

J1ϕ =
[
I(P−1) 0(P−1)

]
Jϕ1 = INR

⊗ J1ϕ
J2ϕ =

[
0(P−1) I(P−1)

]
Jϕ2 = INR

⊗ J2ϕ (17)

where IL is an L × L identity matrix and 0L ∈ RL is an
L-dimensional vector of zeros. Using the subarray selection
matrices in (17), the following invariance equations can be
formed from the steering matrix

Jθ2A = Jθ1AΦ Jϕ2A = Jϕ1Aγ (18)

Since the array steering matrix spans the signal subspace,
the following equations can be obtained after eigenvalue
decomposition of the spatio-temporal correlation matrix

Jθ2ES = Jθ1ESξ Jϕ2ES = Jϕ1ESΨ (19)

where ES are the signal subspace eigenvectors corresponding
to the N largest eigenvalues of the covariance matrix. ξ and
Ψ can be estimated via a least square solution of (19)

ξ = ((Jθ2ES)H(Jθ2ES))−1(Jθ2ES)H(Jθ1ES)

Ψ = ((Jϕ2ES)H(Jϕ2ES))−1(Jϕ2ES)H(Jϕ1ES) (20)

It was shown in [14] that the eigendecomposition of ξ and Ψ
can be expressed as

ξ ≡ T−1ΦT Ψ ≡ T−1γT (21)

Clearly, the DOAs can be estimated from (21) with an ad-
ditional pairing step which can be achieved using the Mean
Eigenvalue Decomposition pairing technique [15]. By adding
the equations in (21), we have

ξ + Ψ = T−1(Φ + γ)T (22)

The invariance matrices are then obtained from (21) as

Φ = TξT−1 γ = TΨT−1 (23)

The direction cosine and normalized frequency are then eval-
uated as

Φ = arg(ξ) γ = arg(Ψ) (24)

Denoting

µ =
Φ

2π∆r
+

jγ

2π∆x
(25)

we use the definitions of Φ and γ in (25) to obtain estimates
of the AOAs as

θ̂ = arg(µ) and ζ̂ = arcsin(µ) (26)

The receive array steering vector is estimated by substituting
the estimates of AOAs into (6).



C. Transmit Spatial Signature Estimation

Once angles of arrival (AOA), Doppler frequencies and
receive array steering vectors have been estimated, the transmit
spatial signature estimation is a least square fit to the chan-
nel for each transmit antenna. We assume that the complex
amplitudes of the scattering sources are the same for each
transmit antenna and all receive antennas and use the channel
between each transmit antenna and the first receive antenna
for the estimation. Using (2) and (15), the set of equations for
the ith transmit antenna are

h1i(1)
h2i(2)

...
hNRi(K)

 =


1 · · · 1

Π1 · · · ΠP̂
...

. . .
...

ΠK−1
1 · · · ΠK−1

P̂



α1i

α2i

...
αP̂ i

+


n(1)
n(2)

...
n(K)


(27)

where Πi = exp(jωiδt) and αpi is the complex amplitude for
the pth ray. A matrix representation of (27) is

zi = Fαi + n (28)

where zi is a vector containing the K known samples of hji, F
is the vandermode structured matrix in (27) and n is the noise
vector. The complex amplitudes are the least square solution
of (27)

α̂i = (FHF + ηI)−1FHzi (29)

where η is a regularizing parameter1. We solve (29) for the
NT transmit antennas and form the transmit signature for pth
ray as vp = [αp1, · · · , αpNT

].

D. Prediction

Once the parameters of the model have been estimated,
estimation and prediction of the CSI is done by substituting
the parameters into the model for the desired time instants

H̃(τ) =

P̂∑
p=1

br(θ̂p)v
T
p exp(jω̂pτ) (30)

where τ denotes the time instant for which the CSI is to be
estimated or predicted.

IV. NUMERICAL SIMULATIONS

In this section, we analyze the performance of the proposed
algorithm and compare with the SISO-ESPRIT based schemes
(MEHaM and MECoM) in [16] and the AR model with
beamspace transformation scheme [8] which we call AR-
Beam. The prediction error of the algorithms is evaluated using
the normalized mean squared error (NMSE) criterion

NMSE(τ) =
E[||Ĥ(t+ τ)−H(t+ τ)||2F ]

E[||H(t+ τ)||2F ]

≈
1

M

M∑
m=1

∑K
k=1 ||Ĥ(t+ τ)−H(t+ τ)||2F∑K

k=1 ||H(t+ τ)||2F
(31)

1This parameter is introduced to make the predictor robust by reducing
sensitivity to the particular values of F.

TABLE I
SIMULATION PARAMETERS FOR WINNER II SCM MIMO MODEL

Number of Drops (Realizations) 1000
Sampling Density 10 per λ

Mobile Speed 50 kmh−1

Carrier frequency 2.0 GHz
Scenario Urban Macro (UMA)

Transmit Antenna Array ULA
Receive Antenna Array ULA

Fig. 1. The NMSE of ESMIP and SISO ESPRIT Schemes for 4×4 MIMO
Channel Prediction versus prediction length at different SNR.

where M is the number of snapshots and || · ||F denotes the
Frobenius norm. The predictions were performed using the
WINNER II/3GPP SCM model [17] with parameters in Table
I. Figures 1 and 2 present the NMSE comparison of the pro-
posed algorithm with the SISO-ESPRIT and AR beamspace
schemes respectively. In Fig. 1, the proposed scheme results
in an improvement over MEHaM and MECoM. Similarly, in
Fig. 2, the proposed ESMIP scheme outperforms the AR-Beam
approach at all noise levels as expected since it utilizes the
spatial information. As expected, increasing the SNR improves
the prediction accuracy. However for SNR above 10 dB, the
performance improvement is only noticeable for the first few
predictions. The CDF of the prediction NMSE of ESMIP for
a prediction interval of 5ms (≈ 0.5λ) is shown in Fig. 3.
Fig. 4 shows the NMSE of the proposed predictor initialized
with observation length between 1λ and 5λ at SNR of 5 dB.
Clearly, increasing the observation length increases prediction
accuracy. However, for observation lengths above 3λ, the
performance does not continue to improve significantly. Fig. 5
compares the performance of the proposed algorithm for the
reconstruction of the channel over the estimation interval with
the noisy channel estimates. We observe that the proposed
predictor offer significance improvement in channel estimates
at low SNR and can be used with common channel estimation
schemes to improve the overall system performance.

V. CONCLUSION

In this paper, we proposed an ESPRIT based parametric
prediction scheme that exploits both temporal and spatial
correlations for realistic narrowband MIMO spatial channel
models. The proposed predictor exploits all available temporal



Fig. 2. The NMSE of ESMIP and AR-Beamspace Approach [8] for 4× 4
MIMO Channel Prediction versus prediction length at different SNR.

Fig. 3. The CDF of prediction NMSE of ESMIP on the WINNER II model
with parameters in Table I for a prediction length of 5 ms (≈ 0.5λ) at different
SNR. Prediction initialized with observation length of 3λ.

and spatial correlations by using a 2D-ESPRIT to overcome
angle ambiguity and improve parameter estimation. It was
shown that our algorithm offers improved performance in
terms of NMSE and achievable prediction length over existing
algorithms. Future work will include evaluation of prediction
accuracy in terms of overall system performance.
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